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’1] ABSTRACT

We study Ehe linear autonomous, neutral system of functional differential

, equations ano sladcl
4. (u’ﬁ?t) + £f(t)) = vex(t) + g(t) (t »0) ,

(" at

x(t) = ¢(t) (£t <0)

Here u and V are matrix-valued measures

Ain a fading memory space.

supported on [0,®), finite wit ct to a weight function, and f, g and

¢ are Cn-valued, continugus or locally jntegrable functions, bounded with
oy resg:*F to a fzd;ﬂg qu ry norm. We give gond;tions*ih;ch imply that
solitions of 4‘4 can be aeg’ omposed into a stable part and an unstable part.
- These condxtxons are of frequency domain type. do ,not need the usual

] decompose the sem;group generated by (XJ into ‘a stable part and an unatable

part.

~

assumption that the slngular, part MU, vanishes,™ Bur results can be used to
P l cc4.¢£ a iy A

AMS (MOS) Subject Classifications: 34X20, 45F05, 45M10
. Key Words: Neutral functional differential equation, fading memory space,
history space, phase space, exponential dichotomy, hyperbolicity.
Work Unit Number 1 - Applied Analysis
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SIGNIFICANCE AND EXPLANATION }

Al

An ordinary time independent differential equation can be written as an %
equation where the derivative x'(t) of an R"-valued function x at time !
t is a given function of x(t). If one allows x'(t) to depend also on :
earlier values x(s), -® < 8 < t, of x, then one gets a functional i
differential equation of retarded type. An even more general equation is
obtained if one lets x'(t) furthermore depend on earlier values
x'(s), *® <3 <t of the derivative x'. Such an equation is called a
functional differential equation of neutral type.

A frequently used technique in the analysis of nonlinear differential and |
functional differential equations is the principle of linearization. This i
means that one replaces the original equation by a linear equation; one then '
obtains qualitative information about solutions of this linear equation, and |
finally one tries to show that the nonlinear equation behaves approximately in o
the same way as the linear equation. Typical results obtained in this way are P
stability theorems, bifurcation theorems, and theorems on stable and unstable
manifolds. For this approach to succeed it is of crucial importance that one
should obtain a fairly detailed knowledge about solutions of linear
equation. Such problems arise in a variety of applications. P

e bkt

e eima

In this paper we study a linear system of functional differential
equations of neutral type and with infinite delay. This equation can be
written in the form

[ 1
at

(*) (x(t) + D(x ) + £(t)) = E(xt) + g(t) (x20) ,

subject to the "initial™ condition x(t) = ¢(t) (¢t € 0)s Here f and g are
given vector valued input functions, D(x_) is a continuous linear functional

of x(s), ®* <8 <t and E(x_.) is a continuous linear functional of E
x(8), =@ < s € t. We show that under suitable assumptions motivated by
applications, the fundamental solution of (*) can be split into three 4

components: one which is exponentially stable, one which is efther
identically zero or exponentially unstable, and one which is either zero or
gives rise to autonomous oscillations. This is exactly the type of
information that one needs for attackir - ¢ .2 associated nonlinear problems.
Some earlier results of the same natu:. i3t, but they apply only to a
retarded equation (which one gets by tuk... Dix.) = 0 in (*)), or to neutral

P

equations with finite rather than infinite adelay. R Al 'T——~
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ON A NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION
IN A FADING MEMORY SPACE

Olof Staffans

1. Introduction

A linear, autonomous, neutral system of functional differential equations can be
written in different ways, depending on which type of solutions one is looking for. In the
classical case the delay is finite, one wants the solutions to be continuous, and therefore
one chooses the initfial functions and the perturbation terms to be continuous. In this

case one can write the equation in the form
(1.1) & (uxe) + £(e)) = vexe) + gle) (€2 0)

with initial condition
(1.2) x{(t) = ¢(t) (t€0) .
Here £, g and ¢ are continuous, Cl-valued functions, and § and V are matrix-valued

measures supported on a finite interval [0,r]. It turns out that the same formulation can

be used in the cage of an infinite delay, provided the measures U and V, this time
b . supported on [0,”®), belong to a suitable weighted measure space, and ¢, f and g are
continuous and belong to an appropriate fading memory space.
In a recent paper (3] John A. Burns, Terry L. Herdman and Harlan W. Stech have studied
the same equation in the case when the solutions belong locally to ILP instead of being
continuous. In this case (1.1}, (1.2) is not a well posed problem. One needs one extra

piece of information to make the solution unique, i.e. one replaces (1.1) by a pair of

equations

)

; (1.3) nexit) + £(t) = y(t) (> 0) ,
(1.4} y'(t) = vox(t) + g(t) {t > 0) ,

and adds the extra initial condition

’ (1.5) y(0) = yy .

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041.




A pair of functions x, y is called a solution of (1.2) - (1.5), if y is locally

absolutely continuous on [0,%) with y(0) =y,, if y' and x belong locally to P,
and (1.3) = (1.5) hold a.e. (see (2.11) below for a definition of the convolutions). The
only difference compared to (1.1), (1.2), is that this time U*x(t) + £(t) 1is well defined
only almost everywhere, so we have to give the value y(0) explicitly, inatead of
calculating it from (1.3). Again, the theory in (3] applies only to the case when the
delay is finite, but as we shall see below, it can be extended to the case of an infinite
delay.

Daniel Henry (22] has studied (1.1), (1.2) with finite delay and continuous solutions,
and obtained exponential growth estimates for the solutions. Let D(z) be the
characteristic function of the kernel in (1.1), f.e.

ple) = (1) - Sy,
where {i(T) and 3(1') are the Laplace transforms of § and V. If det D(z) ¥ 0 on a
line Re z = A, then there is some hope of splitting the solutions of (1.1), (1.2) into
two solutions, one which grows faster than exp(At), and one which grows slower than
exp(it) as t * =, More specifically, one wants to get a decomposition x = xXg + Xgo
where xg is a "stable” golution of (1.1) (but does not necessarily satisfy the initial

condition (1.2)), and xy 1is an “unstable” solution of the homogeneous equation

(1.6) %’t- (H*x(t)) = Vex(t) (-*ctc®) ,

Observe in particular that we want xy; to satisfy (1.6) also for negative values of t.
Indeed, Henry [22] succeeds to get such a decomposition, if i.nfm z = xldat D(g)l > 0, u
has no singular part, and f = g = 0 (Henry also studies the nonhomogeneous equation, and
a nonlinear equation). As far as we know, the question of what happens when ¥ has a
nonzero singular part has been open. Similar decomposition theorems have been proved by
Toshiki Naito [41]), (42] for the retarded equation (which one gets by replacing W*x by
x) with infinite delay in an IP-aetting, and for even more general "phase spaces". This
time the "stable" solution Xgs Yg gsatisfies (1.3), (1.4), and the "unstable"” golution

Xyr Yy satisfies

-2~
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(1.7) utx(t) = y(t) (== <ct<c™® ,

(1.8) y'(t) = vex(t) (=< t<®) .

Observe that if (1.1), (1.3) and (1.4) are homogeneous, i.e. f = g = 0, then both the
stable and the unstable component satisfy the original equation, except for the initial
conditions.

Here we develop a decomposition theory which applies to neutral (as well as retarded)
equations with (finite or) infinite delay in a continuous and a IP setting. We d not have
to assume that the singular part of u vanishes, although the result that we get permits a
stronger decomposition when it does vanish. On the other hand, our setting is less general

than e.q. the abstract phase space discussed in (20).

i 2. On Some Fading Memory Spaces Compatible with a
3 Weighted Measure Space

There exists an extensive theory on spaces of fading memory type; see e.g. [4) - [9],
[158), (20), (27), [34), (37}, [41] and [42) ([37] contains a fairly complete discussion of
] the theory prior to 1977). It is a common feature in fading memory spaces that the norm of

3 the translation operator defined by

Th’
. ' (2.1) T, 8(t) = $(teh)  (theR)
plays a crucial role when one investigates asymptotic properties. The norm of the

translation operator is a submultiplicative function, and we get a connection to the theory

of weighted measures in e.g. [13], [30) by choosing the weight of [13], [30] to be

essentially the norm of the translation operator. Actually, below we use this idea, but
formally we proceed in a slightly different way. We first define the concept of a
"dominating function® ©0(h), and then introduce some fading memory spaces, in which the
norm of the translation operator is dominated by p(-h).

We call p a dminating function on R, 1if p 1is strictly positive, continuous, and
satisfies

(2.2) p{s+t) € p(s)p(t) (s,t @ R); P(O) = 1 .

3=




The condition (2.2) is the same as the condition (2.1) in {30], plus the additional

P(0) = 1, We call N an influence function dominated by P, if n is continuous,
strictly positive, and satisfies

(2.3) n(s+t) < p(sin(c) (s,t @ R); N(0) =1 .,

Observe that (2.3) implies (replace t by s+t and s by -s)

(2.4) P(sIn(t) € n(stt) (s,t €RI ,

where ; is the function

(2.5) pier = (o=t (xem .

Moreover, it is easy to see that both p and ; are influence functions dominated by o,
and that every influence function N dJdominated by P satisfies

(2.6) B(t) € n(e) S p(t) (teRm .
We warn the reader that our definition of an influence function is not quite the standard
one. In general one defines the functions "N and P only on R = (~=,0] or on

R - [0,%) instead of R. We could do so also here, i.e., follow [4] and work with one
dominating function on R’ ana another on R, but the present approach simplifies the
basic theory considerably.

We let M(p;C) be the set of all complex, locally finite measures on R such that

(2.7) = [ ptealulie) <= .

" be the set of

Here |u| is the total variation (measure) of M. Let C".
nXn-dimensional complex matrices, and let "(p,cn!n, be the matrix-valued analogue of
M(P;C) (this time one uses a matrix norm when one computes the total variation |u| of
Wl

In the sequel we shall define function spaces with values in either C, ¢ or cnxn.

Most of the time it is irrelevant in which space the values of the functions lie, and

therefore we do not specify this space explicitly. In the same way, it is often irrelevant

in which space the values of our measures lie, and we abbreviate both M(P;C) and

mieic™™) by M),

For every influence function N dominated by £, we let Bco(n) be the set of

continuous functions ¢ on R satisfying

-4~




lim n(e)é(t) =0 ,
13 o

with norm

(2.8) 161 = sup n(t)|(E)] .
teRr

We show below that these spaces are contained in the space BUC(N) or "uniformly
continuous® functions, defined as follows. A continuous function ¢ on R belongs to
BUC{N) if the norm in (2.8) is finite, and if it is uniformly continuous in the sense
that

1im l'l'ho -¢h=0 |,
h+0

where Th is the translation operator defined in (2.1). By (2.6),
BC, () CBCo(M) CBC (P), and BUC(P) C BUC(M C BUC(P) .
We let L"(n), 1 < p <™, be the set of measurable functions on R satisfying
l¢lp < ®, where
(2.9) 191 = (o (0 foce) Pary VP
The space L‘.(n) is defined analogously, with

(2.10) 191, = ess sup n(t)|o(t)] .
teR

Observe that BUC(N) C Ln(n), and that for ¢ @ BUC(N), one may write F¢h = RéR ~ (cf.
(2.8)). Moreover Lp(p) c Lp(n) C Lp(s), 1<p <o,

One can define, at least formally, the convolution U*$ of a measure I € M(p) and a
function ¢ @ tP(n), 1 < p< =, by
(2.11) uo(e) = [ aus)d(e-sy .
If ¥ = {uij} is matrix-valued, and ¢ = {Oj} is vector-valued, then u*$ in (2.11)

jth ¢

should be interpreted as the vector-valued function whose component is k ujk. X’

with analogous definitions when U is complex-valued and ¢ is vector-valued, etc.

Lemma 2.1. For every i @ M(P), the convolution operator ¢ * u*¢ maps tP(m,

1 < p <> BUC(N) and Bco(n) into themselves, and

2.12 fTusdpl < Qun Wl o
( ) OP Op
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Actually, the proof given below shows that u* aleo maps the subspaces
{6 e BUC(M) | n(e)d(t) * 0 (t+ =)} ana (4 eBUC(N) | N(LIS(L) * 0 (t + =)} of
BUC(N) into themselvea.

Proof. The function s * $(t-s) is measurable with respect to ¥ for almost all t @ R

e =t snla s midaa

(24, Theorem 13.9 and Lemma 20.7), so the convolution in (2.11) is well defined, provided
we can show that
ful * 161ce) = [ 14ce~s) 1alul(a)

is finite a.e. However, by (2.3), with t replaced by t - s, and (2.11) ,

(2.13) nie)lurdl(e) < nedluleidl(e) < (pjul) * (nloh(v)
80 (2.12) follows from e.g. (24, Theorem 20.12], and (2.11) converges almost everyvhere.
It e L'(n) is continuous, then (2.11) converges everywhere, and we may replace the nora
in (2.12) by the norm defined in (2.8).

If ¢ e BUC(N), then T (K*¢) - Wl = due(T ¢ - )1 < Jul AT, ¢ - ¢1 > 0 (b * 0),

so U*$ @ BUC(N).

JRURRIG SO e P STI

In Lemma 2.2 below we prove that Bco(fl) C BUC(N). This, combined with the previous
paragraph, shows that u*¢ 1is continuous whenever ¢ & Bco(n). let ¢ € BUC(n) satisfy
n(e)é(t) > 0 (t * ). Then by (2.11) and (2.13),

ne lweer) < (1 f + [ Intz-s) 16(t-s) lp(s)dlul(s)
(==,£/2)  (£/2,

< [ ets)dlul(s) * sup n(s)|é(s)|
(==,t/2] adt/2

+ [ o(s)alulis) * sup N(s)|d(s)) * 0 (t+®)
(t/2,®) 8¢t/2 ]
The same computation shows that n(t)u*d(t) * 0 (t + -*) whenever n(t)¢(t) * 0

(¢t * =), so u*d e Bco(n) whenever ¢ € BC 6?\).

Lemma 2.2. The translation operator Th is bounded in Lp(n), 1<pce™, with

2.14 It 40 < p(-n)ipr
( ) h"p )¢p

It is strongly continuous in BC (M), in BUC(N) and in LP(M) for 1<p < ®. 1In

particular, Bco(n) C BUC(N).

-




lemma 2,2 is essentially contained in (4, Remark 3.2].
Proof. That the translation operator is strongly continuous in BUC(N) is built into the
definition of BUC(N). That (2.14) holds follows from (2.12) and the fact that

ThO = G_h*o where © is the unit point mass at <h, Xf $ is continuous and has

~h
compact support, then Tho + ¢ uniformly, and in Lp(n) for 1 € p < ®, The gset of
continuwous functions with compact support is dense in Bco(n) and in Lp(n) for

1 € p <=, and this together with the fact that the translation operator is bounded

implies the strong continuity in Bco(n) and Lp(n), 1<p<w,
1 o

Lemma 2.3. Let a e 1P(p), ana ¢ e LI(n), where 1 <p< =™, and Vp + l/q=1.

Then a*$ € BUC(h), and

{2.15) Taegl < mpmq .

If 1<p<™, then a*$ e BC (M.

—

Proof. That (2.15) holds and that n(t)a*$(t) * 0 (t * ) when 1 < p < *® follows from
(2.13) and H3lder's inequality (see e.g. [24, p. 295)). The uniform continuity is due to
the fact that translation is continuous in LP(D) for 1 € p <, and in Lq(n) for

1<€g<¢<™,

We say that an influence function N has the relaxation property, if

(2.16) nie) = o(p(t)) (t* -=) .

Obviously, the function P {itself never has the relaxation property, and by (2.6), a
necegsary and sufficient condition for the exigstence of an influence function dominated by
P with the relaxation property is that 5 has the relaxation property. Again, we warn
the reader that our definition of the relaxation property is related to the relaxation
property in e.g. [4], but not identical to it. They become approximately identical if
p(t) 21 for £t €0 (cf. Lemmas 2.4 and 2.6 below).

lemma 2.4. Let N be an influence function with the relaxation property, and let

. ¢ eBcy(n, ver®m), 1<pc=. Then I7 ¢l =o(p(~t)) and 1, ¥l =o(e(-t)) as

t’..

7=




Proof. We only prove the statement concerning ¢, the proof for ¢ being completely
analogous .

Pix € > 0. Choose T so large that

(2.17) sup Moy )l € e .
fel>r
Define
(2.18) B= sup p(t)ld(e)]
~T<esT

and choose S§ so large that
(2.19) plEIN(-t) S €/8 (£ > 8) .
Use (2.3), (2.4) and (2.17) - (2.19) to get for t ? S,
P(E) T 61 = 3(t) sup N(s) [d(s+t) |
s€R

< Bt sup TN(s)[¢(s+t)| + P(t) sup n(s)|é(s+t)|
|s+t|>T |s+c|<T

< sup n(sH)|é(s+t)| + P(EIN(~t) sup P(s+t) [d(s+t) |
|a+e |>T |g+t | €T
<€+ B(t)n(-t)ﬂ <2

This shows that B(t)htﬂ +0 (¢ + @,

The spaces nco(n) and LP(n) are defined in such a way that ¢ @ nco(n) iff

n$ @ BC where Bco is the set of continuous functions vanishing at ¢, and

o'
¢ erPm) iff no e 1P, where 1P {a the standard, non-weighted tP-space. A similar

result is true for BUC(N).

Rl

{ Lemma 2.5. ¢ @ BUC(n) Liff nd @ BUC, where BIXC is the set of bounded, uniformly

continuwous functions on R.

Proof. Clearly I¢1 < ® iff n$ 1is bounded, so it suffices to show that the two concepts
of uniform continuity agree. We have to show that

lim sup N(t) [é{t+h) =~ $(t)| = 0
h*0 ter

i P T = e
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iff

lim gup [n(t+h)$(t+h) = n(t)d(t)| =0 .
h+*0 ter

But
n(t+h) ¢ (t+h) = n(LId(t) - n(t) ($(t+h) = $(¢))
= (n(t+h) = N(L))d(t+h)
so this is equivalent to

1im sup [n{t+h) - n(t){ [¢(t+h)] =0 .
h*0 teRrR

By (2.3), (2.4), the continuity of ¢ and 5 at zero, and the fact that

PIO) = p(0) = 1,

In(e+h)=n(ed | _

n(t+h) 0 .

1lim sup
h*0 teR

This means that

lim sup In(t+h) ~ n(t)| (4(t+h)]
h*g teR

Intesh)=n(e) |

n(t+h) 0

< 141 1im sup
h*0 teéR

O
when we discuss (1,1), (1.2) and (1.2) = (1.5) in a semigroup setting, we shall work

in one of the spaces BUC(N), nco(n) or tP(m, 1¢ p < ®, but restrict our functions to

R™. We denote the restricted spaces BUC(R in), BC, (R";n) and IP(R7;n). One gets norms
- +

for these spaces by reatricting t in (2.8), (2.9) to R . The spaces BUC(R M),

BCO(R"M) and LP(R+1Y\) are defined analogously.

We define the ocombined translation and restriction operator At by
(2.20) 8,8(s) = d(sst) (s e R .
Observe that & = 8,7 , and that A, maps BUC(N) into BUC(R 1), BC,(N) into
BC_ (R 3n), ana P(M into PRI,




When one studies a nonlinear neutral functional differential equation (e.g. with
finite delay) it is often of crucial importance to know that the trajectories of bounded ’
solutions are relatively compact. We shall not discuss the nonlinear equation in this
paper, but we want to record the following compactness result for future use.

Lemma 2.6. Let P be a dominating function satisfying p(t) 21 (t @ R"), and let N be

an influence function dominated by p, with the relaxation property. let V be a set of

continuous functions ¢ on R satisfying At¢ e BCD(R-;I'\) for t @ R'. Then the set

. SRR e i B b s

(asvev, te R'} is relatively compact in BC,(R™jn) iff for every T > 0, the set

V 1is uniformly bounded and equicontinuous on (-T,”®), and ;

(2.21) lim sup n(e){é(e)l =0 .
L ¢ev

One could prove Lemma 2.6 by egsentially repeating the argument used by Yoshiyuki Hino
in the proof of his corresponding compactness lemma {27, Lemma 4]. However, we prefer to
give a slightly different proof.

Proof. That (2.21) is a necessary condition for relative compactness follows from the fact
that the set {Aoww @ vV} is totally bounded, and each ¢ @ V satisfies
1im n(t)d(t) = 0. On each interval ([-T,0), n is bounded away from zero, so relative B

=0
compactness in Bco (R™sn) implies relative compactness in BC([-T,0), the set of bounded

continuous functions on [~T,0)}, with the maximum-norm. Thus, if {At¢|¢ ev, te rR*} s
relatively compact in BCO(R'M). then by the converse of Ascoli's theorem, the set
{¢(s+t)|¢ e v, t € R*} 1is uniformly bounded and equicontinuous for ~-T € 8 € 0. But this
implies that Vv is uniformly bounded and equicontinuous on each interval [(~T,®], as
claimed.

Conversely, suppose that for each T > 0, V restricted to (-T,*] is uniformly

bounded and equicontinuous, and that (2.21) holds. We claim that this implies

{(2.22) 1im sup n(s)|d(s+t)} =0 .
P i m
eert
Dafine
(2.23) h(t) = sup n(v) ()| .
¢ev

-10-




Then h(t) *+ 0 (t * -*), and

(2.24) sup h(t) =N ¢ =
téR
Put
(2.25) g(t) = n(e) sup 2L
t<ace "(8)

Then g(t) > h(t) (t @ R). Observe that by (2.3) and our assumptions on 7,
n(t) € p(t-s)n(s) € n(s) for t < g, so N 1is nondecreasing. This fact together with
(2.24) and (2.25) yields g(t) € N (t € R). We claim that g(t) * 0 (t * -*). Pix

€ >0, and choose T so small that h(t) € € (t € T). Then for t < T,

h(s)

n(s) + € .

g(t) € n(t) sup
T<8<™®

Thus, as n(t) * 0 (t * -®), we have g(t) € 2¢ for t sufficiently small, so indeed,
g(t) >0 (t * =),
By (2.23), every ¢ @ V satisfies
14(s)| € n(s)/n(s) € g(8)/n(s) (s €R) .
It follows from (2.25) that g/n 1is nonincreasing, and so also
IT,8(s)] = [6(s+t)]| < gls+t)/n(s+t)
<glsi/ns) (ter',seRr .
Thus,
sup n(s){é(s+t)| < g(g) *+ 0 (s * ~=) .
0ev+
terR
This proves (2.22).
as BCO(R';H) is a Banach space, it suffices to prove that {ﬁt¢\¢ ev, t e R’} 1is
relatively sequentially compact. Take segquences Ok eV and ¢t € R*. By Ascoli's
theorem, we can find subsequences (which we again denote by ‘k and ¢,) and a continuous
function ¥ such that ttkok + ¢ uniformly on compact subsets of R. Fix € > 0., Then,
because of (2.22), we can find a number T € 0 such that

sup N(s) |7, ok(-)l <€, sup n(s)[¥(m)| €& .
s&T 13 s<T

-11=




on [-T,0] we have uniform convergence, 8o for k big enough

sup N(sllt_ ¢ (s) - ¥(=)] €€ .
T<g<0 tk k

This shows that & ¢ >4V in Bco(n'pn), and completes the proof of Lemma 2.6.

%

3. ©On Laplace Transforms and Derivatives

We recall from [30) that to every dominating function one may adjoin two real numbers

L ] »
p, and p , = <o, ¢ p <*®, as followa

b, = ~ing 10TLLE) _ y4p log PLE)
g ©

£>0
(3.1}
*
0" = -sup log p(t) _ ~1im logtpgt[
t<0 L~
Moreover,
*
(3.2) M(P) C M(exp(-At)) for every A, p, S A< p .

The bilateral Laplace transform of a measure Y if defined by

(3.3) Bz = [ e™faue) (o, < Rez <o) .

Equivalently, define ez(t) = exp(zt), observe that e, e BUC(;)C). and define
(3.4) ftz) = uve _(0) (b, S Rez<0") .

Let q, r € M(P). Then the mapping ¢ * q*(r*$)(0) is continuous form Bco(;)
into ¢ (or ¢" or cnxn)' and by the Riesz representation theorem, it is induced by a
measure s € M{(p), 4i.e. we can find a measure s € M(P) such that

8*¢(0) = q*(r*$)(0) .
We define the convolution q*r of q and r to be this measure 8. Then by definition
(q*r)*$(0) = g*(r*$)(0) , ‘
and as translation commutes with convolution, we get

(3.5) (qrr)*é = q*(r*¢) .

-12-
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Once one knows that (3.5) holds for ¢ @ Bco(s), one can show that it must also hold
tor ¢ @ BUC(N), and for é @ LP(n), 1 € p € ® (in an almost everywhere sense), where n
is an arbitrary influence function dominated by p. If ¢ e tP(n), 1 € p < ®, then we can
find Y € BCO(S) A LP(n) such that N-Wlp is arbitrarily small. As (3.5) holds for ¥,
and the oconvolution operator is continuous in Lp(n), we get (3.5) for every ¢ @ Lp(n) .
It de L“(n). then we can find 5 such that ; is Borel measurable, that |¢-;l =0,
and sup ﬂ(t);(t) ¢<®, If ¢ € BUC(N) then take 5 = $. We can then find a Borel
measu:::l.e sequence 'Jﬂn e L‘(n) (or Wn e BCO(S) in the continuous case) such that
"(t)*k(t) is uniformly bounded, and wn(t) + $(t) pointwise. By lebesque's dominated
convergence theorem,

(@* ©) * $(8) = Un (@) * ¥ (t)

noe

-lmgtlrtye =g (c Hee

(the second equality holds a.e. in the L.-cue, and everywhere in the continuous case.
Thus, if ¢ € BUC(N), then (3.5) holds everywhere, and if ¢ € L“(n), then (3.5) holds
almost everywhere.

If one applies (3.5) with ¢(t) = exp(zt) and uses (3.4), then one gets

(q*xV(z) = §(a)f(z)

In particular, the notion of convolution defined here is equivalent to the notion used in
(13) and [30}.

The following lemma characterizes those measures in M(¢) whose (distribution)
derivative also belongs to M(P).

»
lLemma 3.1. Suppose that p, q @ M(P), and that for some A @R, p, €A S p,

(3.6) zp(z) = q(z) (Re z = A) .

Then p is induced by a function a, if.e. dp(s) = a(s)ds, which is locally of bounded

variation, and whose measure derivative da equals gq. In particular, da € M(p). !

Conversely, suppose that a @ v e, and da € M(p). Then

(3.7) zd(z) = (dafz) (0, CRez <@’} .

13-
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Proof. Define dp,(t) = exp(=At)dp(t). Then p, isa hounded measure, in particular, it
is a tempered distribution, whose (distribution) Fourier transform f)x(lw) equals

B(A+iw) (w e R). The Fourier transform of the distribution derivative P, °f P,
equals iwp{A+iw) (w @ R), 80 the transform of pr + p} equals (A+1w)B(A+iw)

(W@ R). On the other hand, this is also the transform of 9. defined by

dq,(t) = exp(=-At)dq(t). Thus, pr + pi =q). In particular, pi =q - pr is a finite
measure, hence Py is induced by a function oy of bounded variation. Thia means that
) 'is induced by a function a which is locally of bounded variation, and

A exp(=At)a(t)dt + d(exp(~it)a(t)) = exp(~A)da(t) .
But dlexp(-At)a(t)) = =) exp(-At)a(t)dt + exp(-it)da(t), 8o we get da(t) = dq(t).
The converse statement is proved in a similar way. One gets (3.7) in the distribution

sengse on all lines of the form Re z = A, o, < A< D.. even w1£Mut the assumption 1
da @ M(p). As da C M(p), we know that (da)A(z) is a conti.nuo.us function, and this
makes (3.7) hold in the classical sense.

u]

Lemma 3.2. let b e M(p), and let a @& L‘(D) with da @ M(p). Then u*ta is locally of

bounded variation, and d(u*a) = u*da @ M(9).

L ]
Proof. Fix any A, p, € X € p . By Lemma 3.1, on the line Re z = A,

A A A A A A A
z(u*a)(z) = zu(z)a(z) = u(z)(za(z)) = u(z)(da)(z)
A
= (u*da)(z) .

Thus, by Lemma 3.1, M*a 1is locally of bounded variation, and d(u*a) = u*da.

The following lemma plays a crucial role in our study of the differentiability
properties of functions in BUC(N) and 1Py, 1 <pco,

Lemma 3.3. Define & (t) = 1/h (-h < t<0) if h>0, 5 (t) =~/h (0S¢t < -h) if

h <0, and 6 (t) =~ 0 otherwise. If ¢ €P(m), 1<¢pc=, then § *¢+9¢ in

P () as h * 0. The same statement is true with tP(n) replaced by BUC(n), and by

acom).
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The LP version of Lemma 3.3 is essentially contained in [37, Lemma 2.4, p. 73]. As
h * 0, once can regard 5h as an approximation of the unit point mass & at zero. The
proof of T-mma 3.3 given below could easily be extended to other "approximate identities"
5 .
than h
Proof. First consider the cage ¢ € BUC(N). We have to show that

1 (0
ne) ke [ dtemras - d(e))

tends to zero as h * 0, uniformly in t. Write this expression as

1 t+h
te

D (4(s) ~ d(t))as)

n(t)

e

< nee) = 18(s) - d(t) las] .

i

As ¢ @ BUC(N), lrho - ¢+ 0 (h*0), which means that for every € > 0, we can find
Y > 0 such that for all s, t € R with |s-t] < ¥,
n(e) I4(s) - d(ey] <€
Clearly, this implies that |6h'¢ -$0 <e for 0 < |h| <Y, and we have proved that
§,%¢ * ¢ in BUC(N) whenever ¢ € BUC(N). If ¢ @ BC (M), then by Lemma 2.1 and 2.2,
5h'¢ e Bco(n). and by the preceding argument, Gh'o + ¢ in BC,(N) .
Next consider the case ¢ € Lp(n), 1<p<c<>®, If ¢ is continuous and has compact
support, then th + ¢ uniformly, and also in Lp(r\) as h * 0, The set of functions

of this type is dense tn LP(n), a0 Gh'O + ¢ for every ¢ e 1(n).

As a corollary we have the following lemma.

Lemma 3.4. 1f ¢ 4is locally abmsolutely continuous with ¢' e Lp(n), 1 <p<=, then

tho-oebp(m, and h-,(thO_o)*W in tP(n), as h * 0. Then the same statement

is true with Lp(n) replaced by BUC(n), and by aco(n;.
This follows directly from lemma 3.3, because h-’(tho - ¢) = Gh'o'.

1S5




We let w1,p (N}, 1€ p< > be the set of locally absolutely continuous functions
$e Lp('\) satisfying ¢' e Lp(n). Similarly, let BUC’(n) (and sc;(n)) consist of
those continuously differentiable functions ¢ @ BUC(N) (or ¢ € nco(n)) such that
¢' e BUC(N) (or ¢' € BC,(M)).

Lewma 3.5. Let M eM(P), and ¢ €W 'P(n), 1$p <= Then usdew P(n), ana
7't (ue¢) - ue4) * w4t in 1P(N) as h > 0. In particular, (')’ = U*¢'. The same
statements are true with W' 'P(n) replaced by o' (n) and by nc;(n), and tP(n)

replaced by BUC(N) and by BCo('l).
This follows again directly from Lemma 3.3, combined with Lemma 2.1.

Lemma 3.6. Let a e L'(D) with da e M(P), and let ¢ e LP(n), 1< P ¢ ®. Then
a*¢ e w''P(n), ana n7'(r (a%4) - a*4) > Ga*¢ in 1P(M) as h* 0. In particular,
(a * ¢)' = da *¢. The same statements are true with “1.p(,” replaced by auc'(n), and

by ac;(n), and 1P(N) replaced by BUC(N) and by BC,(N).

Proof. Clearly it suffices to show that h-'(fh(l'.) - a*$) * da*¢ in B(N) whenever

¢ € B(n), where B(N) 4is one of the spaces tP(my, 1 ¢ p ¢, BUC(N) or BC (M. By

Lemma 3.3, § ¢ (da*¢) > da*$ in B(N) as h * 0. However, & ¢ (da*¢) = (6 *aa) * ¢,

and 5h'da is almost everywhere defined by the function
s, *dact) = v (aten) - ace)) .

Thu'l

8, * (@n*) = hl((T a) ¢ ¢ - ath)

= v T a0y - ave)

80 hq(Th(a'O) - a*$) » da*d¢ in B(N), as desired.

1.*

Lemma 3.7. w''P(n) C BCo(N) for 1€ p <=, and W' (n) CBUC(N).

Proof. Take ¢ € W 'P(n), 1€ p< =, and use (2.3) to get

~16-




R B A,

lrho - ¢t = Sup, o n(e) |d(t+h) =~ d(t)

< sup gy n(t) (/5190 (0) lan

< (e =) ewp U ne) 14t (e las1)
ter ter
ts—t|€|n]|
<( sup p(v))(sup If:ﬂ‘ n(s) 14* (s) ldsl) .

Ivi€in} ter

The first factor sup P(v) 4is bounded as h * 0, and the second factor
{vi<inl|

sup lff”' n(s) 19 (s) | as|
teR

tends to zero a8 h * 0, because N§' belongs to the standard, non-weighted LP-gpace

over R. This proves that ¢ @ BUC(N).

Now suppose that p ¢ =,

Then by Lemma 2.5 and the preceding result, n¢ is

uniformly continuous and belongs to LP

(without weights), so n(t)é(t) * 0 as t + =,

(]

Remark 3.8. Lemmas 2.2 and 3.3 - 3.6 are also true when p = *, {.e. with Lp(n)

replaced by L.(n), and u"P (") replaced by w"'(n), provided one throughout replaces

the strong convergence with nak'-eonvorq.nce. This follows from the fact that these

lesmas are true in L‘(a), where

(3.8) Aty = (-t (cem

and that r..(n) can be identified with the &ual of L‘(ﬁ) through the duality mapping
<P,9> = $*9(0) .

Observe that ;I is an influence function dominated by p 4iff n is so.

4. A Modified Problem
We shall now turn to our study of (1.1), (1.2) or (1.2) - (1.5) in a fading memory
space. Llet  be a dominating function or R", i.. a positive, continuous function on

RY satistying

-17-
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(4.1) Pls+t) < p(sip(t) (s, t @ R'), P(O) =1 .
In addition, assume that
(4.2) o, = - ing 299 0M8) . _ 4y, 109 PLE)
t0 [2end

(cf. [30, §2]), and suppose that
(4.3) p{ztewr:7.t) is nondecreasing .
When (4.1) ~ (4.3) hold, o»» mry #.3:.< P to a dominating function on R, as defined in
Section 2, by putting
(4.4) &) = exp(-p,t) (£t <0) ,
and in the gsequel we thir<yghaus’ <ssume that (4.4) holds (although other extensions are
pc.asible; cf. [31]. We denoted the subset of M(p) than vanishes on (~°,0)} by
LMTIN

In the sequel we shall not deal with (1.1), (1.2} or (1.2) = (1.5) directly, but N
rather with modified versions of these equations. The LP case, i.e. the modifications of
(1.2) - (1.5) is slightly simpler, so we treat this case first. In (1.2) = (1.5), let
u, venr;pic™), £, ge tP(RYin;e®), and ¢ @ tP(Rsn;c”), where 1< p<€ e, and n
is an influence function dominated by P. Redefine x and define y for t € 0, and

$ for t> 0 by

(4.5} x(t) =0 (¢ <0) ,
(/] (¢t € =-1) ,

(4.6) y(t) =

(1*t)yo (-1<t<o0) ,
(4.7) () =0 (£t >0) .
Define

y{t} (¢t <0 ,
(4.8) f1(t) -

ued(e) + £(t) (¢t > 0) ,

y'ie) (¢ <0) ,
(4.9) 91(t) -

ved(t) + glt) (t > 0)

-18=-




Then ¢, £4, 9, e Lp(nyn;C), with £, and g, depending linearly and continuously on
$, £, g and Yoo and (1.2) - {(1.5) are transformed into
(4.10) u*x(t) + f'(t) =y(t) (teRr) ,
(4.11) y'(t) = v*x(t) + g (t) (teR) ,
with initial conditions (4.5), (4.6) (of course, (4.10) and (4.11) hold only almost
everywhere). The fact that (4.10), (4.11) are equations on R rather than on n*, and
that all functions vanish for t € -1, make (4.10) and (4.11) easier to analyse than
(1.2) - (1.5).

In the continuous case we use essentially the same transformation, but modify the
functions close to zero in order to make all functions continuous. This time take u, Vv
as above, f, g€ BUC(R*;H; Cn), and ¢ e BUC(R-;ny C"). Define y by (1.3) to transform

(1.1) into (1.3), (1.4). Redefine x and define y for t < 0 by

0 (¢ < -1 ,
(4.12) x(t) =

(1+e)$(0) (-1 <t < 0) ,

0 (¢ < -1) ,
(4.13) y(t) =

(1+t)2(at +8) (-1<t<0) ,

where @ and B are chosen so that y(0) = U*$(0) + £(0) and y'(0) = v*§(0) + g(0),

i.ec B = u*d(0) + £(0) and a = v*$(0) + g(0) - 28, Define

- $(e) - x(t) (£ €0) ,
4(14) F(t) =

0 (£ > 0) ,

y(t) = u*x(t) (t €0) ,
(4.15) £1(t) - { -

£(t) + u%P(e) (t > 0} ,

y'(t) = vex(t} (t €0) ,
(4.16) q,(t) - { -

git) + vé(t) (¢ > 0)

-19=
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Then 9, £4, 9, € BUC(R!H1Cn), with £, and g, depending linearly and continuously on
¢, £ and g, and (1.1), (1.2) are again transformed into (4.10), (4.11}, but this time
with the initial conditions (4.12), (4.13). If £, ge BCO(R*yn; c“), then
£y 9, @ aco(n;n:c").

We rcall U atomic at zero, if
(4.17) det u({o}) po ,
i.e. ¥ has an invertible point mass at the origin. We assume througwut below that
(4.17) holds, as one usually does when one studies a neutral equation (if (4.17)} is
violated, then the ecuation may bacome advanced rather than neutral). Thanks to the fact
that our initial data vanish for t € -1, one can apply exiatence and uniqueness results
for the case of a finite delay, to show that (4.10), (4.11) with initial conditions (4.5),
(4.6) or (4.12), (4.13) has a unique solution on R (see [3] for the 1tP-case and e.g. (18,
p. 275) for the continuous case). However, in general (4.10), (4.11) also has solutions
which do not satisfy the initial conditions, and these will play an important role in the
sequel. We shall solve (4.10), (4.11} by using "resolvents” or "fundamental solutions”.
The resolvent which vanishes for t < 0 will give the solution of (4.10), (4.11) which
satisfies the right initial condition, and the other resolvents will be used in our

decomposition of solutions into stable and unstable components.

5. On_the Resolvents
If one applies the Laplace transform to (4.10), (4.11), and solves for ;, ;, then

one gets, at least formally,

(5.1) %(z) = D-1(z)(a1(z) -2 20,
(5.2) §z) = S0 (21§, (21 - Sew it 0,
where

(5.3) D(z) = zh(z) - S(z) .

Still proceeding formally, suppose that r is a function, locally of bounded variationm,

such that

-20~
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(5.4) 2 =02 .
Then the solution of (4.10), (4.11) should be given by

P - .
(5.5) x r g1 & t'1 '

(5.6) Yy = u‘r'g1 - \)'r'f1 .

In the sequel we make this formal argument precise.
We follow R. L. Wheeler [45] and G. S. Jordan and R. L. Wheeler [31), and define the
determinant measure det U of ¥ by computing the formal determinant of W, but

replacing all pointwise multiplications by convolutions. More precisely, if u = (ll1 ),

b
then

det D= ] sign(T)u

* | Seootk N
wes_ 17(1) 27(2) nt(n) *

where S, is the group of permutations of {1,000,n}. as v e M(pycnxn) is supported

on R*, we have det b @ M(P;C), and det U is supported on R*. Split det u into its |
discrete, singular and absoluvely continuous part
det M = (det u)d + (det u)' + (det ")a '

just in the same way as in (31]. Finally, define

i (5.7) Q= {1 >0, linf|(det W) (A + iw)| > V(det ) L} ,
wgR
where
; : (5.8) V(det u) 1, = [§ expl-At)al(det ) l(t) .

Below we work most of the time in measure spaces different from our original measure

space M(P). Define

(5.9) () = et (em |,
ot (rer) ,
(5.10) n (¢) =
8,a
¢ (cerh .
«21=
L




Then n is a dominating function, and so is N if a € B, Define M and M to
A 8,a A «,B

be the measure spaces "X = H(nxl, and “u g " M(n Observe that "a 8 - Ha ] HB'
’ ,

B,a"

and that H(R*rp) C My 8 for all a,8 satisfying p, € a € B. Let L; and L be the
[

1

a,B

corresponding spaces of integrable functions, contained in Hx and Ha g* Ag in (5.8), we
’

1
denote norms in M, and L, by ' IX' and norms in HG,B and La,B by | 'G,B'

t. In the sejuel we throughout let § stand for either the scalar-valued or the matrix-
valued unit point mass at zero. We use 1 to denote the identity matrix in cnx".
In our first theorem we construct solutions r, to (5.4).

Theorem S.1. Let A C I, and assume that det D(z) ¥ 0 on the line Re z = A. Then

there exists a unique 29 e L; with dx-x e HX such that

(5.11) dr, * ¥ - 1,* = ukdr, - v, = s .
1
Mo eL d dr, e M £ €>0. If A= d
reover, r, A A4E and dr, A, A+e or_somwe 0. If Pes Aand }

5 ~ o

(5.12) inf f(det w) (p, + iw)| > [ o(tidl(det W) _[(t) ,

a’ 0 8
weR
1

3 then r, € L (p) and dr, € M(P).

The proof given below is adapted from ([31].

Proof. To get uniqueness it suffices to observe that (5.11) and Lemma 3.1 imply
N
22, (2)li(z) - 3,(2)%(z) =1 (Rez = %) .
hence

(5.13) Qx(z) =0 Nz} (Rez=1A) ,

and that a function in L; is uniquely determined by its Laplace transform on the line
Re z = A.

Suppose that we can find € > 0, a function r, e Ll A+e such that (5.13) holds, and
’

a measure s, e "X,A+e such that
-1
(5.14) 8,(z) =20 (z) (Re z=1) .
Then, by Lemma 3.1, L3} is locally of bounded variation, and drx = 8, Define
tx - drx'll - IX.V .

Then, for Re z = A,

-22-




A EY A A A
tx(z) - ztx(z)u(z) - rx(z)v(z)

-1 A A
= D (z)(zu(z) - V(z)) =TI ,

so t; =8, i.e. dr *u - r,*v = §. 1In the same way one shows that uvar, - ver, = §, so
Ty is the solution of our problem,
1
It remains to find € >0, r, € L and s, €M satisfyin 5.13 a
* Ty @ Ly e 2 O M) e stying (5.13) an
(5.14). as A C2, we have

inf |(det u)d(A + iw)| > I(det "’.'x '
wWeRr

-

and so by the uniform continuity of (det u)d(z) in Re z > A, we can find € > 0 such
3 ' that
(5.15) inf I(get W) (z)] > F(det W) 1, .
ASRe z€A+E 8
In particular,
1im fnf  |det B(z)] > 0 ,
z|+=
A<Re z<$A+E
and as (det D(z))/z - det Nz)y + 0 (l1z] * ®, A S Re z € A4€), we must have
1lim inf [det D(z)] > 0 .
|2+
ACRe zSA+4E
In the strip A < Re z < A+ det D(z) 4is analytic, so it can have only finitely many
zeros there, By decreasing the value of =, if necessary, we may assume that
(5.16) det U(2) # 0 (A SRe z € A+e) .
It follows from (13, Satz 7] and (5.15) that (det u)d + (det u)- has an inverse g
in "x,he' i{.e. there oxists a meagure q € MX,)ne such that
(5.17) [(det W) (z) + (det W) _(2))§(z) = 1
for X € Re z € A+€., Fix an arbitrary a < A, and define e(t) = exp(at) (t > 0),

e(t) =0 (£t <0). Then e @ L; Ase’ and S(z) - (z-(l)-1. Write (5.13) in the form
’

3@ =072 = S idita) + Seeradiar - Sy

L S(2)4(z)_ady (B(z)+(2) (ali(2)=D(z)))
S(z) det [N(z)+e(z) (ak(z)=D(z)))
-23-




vhere adj(i(z) + 8(z)(al(z) - V(z))] 1s the adjoint of the matrix . ,
u(z) + a(z) (aﬁ(z) - '\‘O(z)). This matrix is the transform of a measure in Hx’“e, namely
the matrix~valued measure one gets by taking the formal adjoint of U + e*(au-v),
replacing multiplications by convolutions. Thus, if we can invert the denumerator in
(5.18), then (5.18) defines a measure in Mx,h»e'
Observe that det[u + e*(au-~V)] has the same discrete and singular parts as det U
(because e*(au-vV) is absolutely continuous). This, together with (5.17), implies that
d(z)det(N(z) + &(z) (alitz) - Sz = 1 + Gz
where h {s the absolutely continuous part of det[H + e*(au-vV)], Moreover,

1+ §z)h(z) = (det D(z))3(z)8(2) = § for A < Re z € A+c. Apply e.g. (30, Theorem 2.3)

to get a function 4 @ L; Ase such that
,

U +8hEN™ =1 +8z) (A <Rez< ) .

R N

This means that (5.18) becomes
(5.19) £\ (2) = &z)§(e) (143(2)) adi(B(z) + 8(z) (ahez) ~ Semn) o
This is a sum of products of transforms of measures in My e’ multiplied by the
’
trangform e(z) of e & L;,X«:' Thus, (5.19) defines r, as an element n? :;'1_'“‘.

To get a solution s, @M of (5.14) we multiply (5.19) by z. ar® observe taac

A,A+€
28(z) = 1 + ae(z) (A < Re z € A+e) .

A A A
8,(2) = (1 + a8(2))q(2) (1 + d(z))aas(B(z) + St2) (ali(z) - V(z)) 3

and this defines 8, as an element of "x,he'
Essentially the same argument gives the special claim r, e ') ana dr, @ M(p)

when A = p , and (5.12) holds.

Recall that U is atomic at zero, if det u({0}) ¢ 0.

Theorem 5.2. Let U be atomic at gero. Then there exists a constant d > p, such that

{4, CQ, and det D(z) ¥ 0 for Re £ > 4. Moreover, ry vanishes for t < 0, and

r, = rd for every A > d, where T,y and ry Are the resolvents constructed in Theorem

5.1,
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Proof. The proof of Theorem 5.2 is very similar to the proof of Theorem 5.1. The main

+
a

(-~,0), and that we invert the determinant of U + e*(ai-v) in (5.189) in an elementary

difference is that we, this time, work in the space M, of measures My, vanishing on
way, using a norm estimate, instead of (13, Satz 7).
Fix an arbitrary a < p_, define e(t) = exp(at) (t > 0), e(t) =0 (t < 0), and

write (5.13) in the form

T (e) = 8(a) (H(2) + S2)(aiitz) - Vezn) ™
(5.20) adi[b(z)+8(z) (ali(2)=V(2))]
det[li(z)+e(z) (ab(z)=V(z))]

= 8(z)

+
dl
det (U + e*(au = V)) in n; then (5.20) defines a solution r; of (5.11) in M.
lll; C H; (o4 l‘lX for every X 2> d, the uniqueness of the solution of (5.11) in My yields

If we choose 4 ? P,s then e, u, vem and if we can find an inverse to

As

ry = r, for A > 4. Thus it only remains to find 4§ » p, such that [4,#) C Q,

det D(z2) ¥ 0 for Re z > 4, and such that det(k + e*(ap - V) has an inverse in H;.
As U 1is atomic at zero, and u + e*(ap - V) has the same discrete part as U, the

measure det(lU + e*(au = V)) has a point mass at the origin of size det u({0}) ¢ 0.

Define a = det u({0}), and put q = aé - det(m + e*(au -~ V)). By Lebesque’s dominated

convergence theorem,
‘aly = [; expl-Atialgl(ty 0 (A > ,

8o we can find a constant 4 2 p_  such that 'q'd < lal. Aas Ig/at ¢ 1, the measure
+
d'

expanding (ad - q)-1 into a (convolution) power series. Thus, there exists a measure

al - g = Qet(y + e*(ap -~ V)) has a (convolution) inverse in M which one gets by simply

pe M; (i.e. p = (al = q)-1) such that p * det(u + e*(at = V)) = §, and so (5.20)
defines a solution Ty e H; of (5.11). The laplace transform of rq converges absolutely

for Re z > d, 80 necessarily det D(z) ¥ 0 (Re z > 4). That (4,*) C follows from

the fact that for A > 4,
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inf |(det M) (A + iw)| - I(det u)
weR d s A

> lal - exp(-At)(a} (det wi liE) + af(det u)sl(t))

(0,”)

> |a} -lq'A > lal -lqld>0 o

6. Decomposing the Solutions

By applying Theorems 5.1 and 5.2, we get solutions to (4.10), (4.11) of the form
(5:5), (5.6).

In Section 5 we worked with the dominating functions nA and “8,&' defined in
(5.9), (5.10). The number X in Theorem S.1 determines the growth rate of the solution of
(4.10), (4.11) that we obtain by using the resolvent Ty Below we will have to replace
our original fading memory spaces by the spaces that one gets by choosing the influence

function to be either n, or ns'a. Observe that n - “u,s‘ If a < B, the na,B is

B,a

no longer a dominating function, but it is still an influence function dominated by n

8,a°
Also note that my (2.5), (2.6) and (4.4), n(t) » ne) (¢ >0, A2p,)
When we say below that a solution x, y of (4.10), (4.11) belongs to "the appropriate
fading memory space with influence function nx', we mean that if f,, g1 € BUC(N), then
X, y € BUC(N,), if £,, g, @ BC(N), then x, y € BC,(n,), and if f,, g, € LP(n),

1<p€<®® then x, y € Lp(nx).

Lemma 6.1, Let T, e L;, with dr e "A be a solution of (5.11), and define

(6.1) x, = rx'g1 - drx'f1 ’
(6.2) Yy, = u'rx'q1 - V'rx'f1 .

Then Xy Yy belong to the appropriate fading memory space with infiuence function "A'

and X Yy is a solution of (4.10), (4.11).

Actually, the solution X0 ¥y in Lemma 6.1 is unique, i.e. no other solution x, y
of (4.10), (4.11) belongs to the appropriate fading memory space with influence function
nx. However, we do not rely on this fact below, and we leave the uniqueness proof to the

reader.
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Proof. That Xy ¥y belong to the right space follows from Lemma 2.1, Use (5.11), (6.1),

(6.2) and Lemmas 3.5 and 3.6 to get

utxy + £, = utrytg, + (8 - utdry )t =y,
Vex, + g, = (5 + \)'tx)'g1 - \mu-A-f1 -

= "'dtl'g‘l - \"drx'£1 =y' .

This means that X0 ¥y satisfy (4.10), (4.11).

Lemma 6.2. In addition to the assumption of lLemma 6.1, suppose that T, vanishes on
(=*,0). Then %, ¥y satisfy xx(t) = x(t), Yx(t) = y(t) (t € 0), where x and y
are given by either (4.5), (4.6) or (4.12), (4.13).
Proof. By (4.15), (4.16) (or (4.8}, (4.9)}), (5.11), (6.1), Lemmas 3.5 and 3.6, and the
fact that T, vanishes for t < 0, we have on the interval (-=,0],

X T Nty - dnytf,

= r)"(y' = V*x) = dr,*(y - u*x)

= %' -ar, %y + (dr,* - Yt = x
so x,(t} = x(t) for ¢t < 0 (almost everywhere in the LP-case}. By (4.10), for t € 0,
Yy, = ""‘x + t1 -ty 4 {‘ = y, 8o alse yx(t) = y(t) for t € 0.

Lemma 6.3. Let r  and rg be as in Lemma 6.1, with a < 8. Then

x"'B = xg = X, and y“'B =Yg " Y, helong to the appropriate fading memory space with

influence function n , and x y is a solution of the homogeneous mtlom
e s '@ B! == "a,8 “a,8
(1.7), (1.8).

This is a direct consequence of Lemma 6.1 and the fact that nu g " '“"{“a'"a}'
’
femma 6.4, Let [a,8]) C 1, with det D(z) ¥ 0 on the lines Re 2 = a and Re z = f.

Then det D(z) has at moast finitely many zeros z 1€ 3¢m of finite ordex ky i

the strip @ < Re z < B. Moreowver, Xy,8 and Yq,8 in Lemma 6.3 are of the form
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m th
(6.3) xg,plt) = 321 pj(t)e ’

m zjt
(6.4) Yq,plt) = 321 qj(t)c .

where Py and 94 are polynomials of degree at most kj - 1. In particular, if
< < - = Q.
det D(z) ¥ 0 in the strip a < Re z < B, then Xe,8 = Ya,8 (]
The proofs of (6.3) and (6.4) are completely similar, so we prove only (6.3) below.
Proof. Recall that the resolvents r, in Theorem 5.1 satisfy r, @ L1 and
——— A A A,
drx e

1
A, Ae for some € > 0. In particular, r, e Lx1 and 4ar, e ux1 for every A1,

A< A1 < 11 + €. By the uniqueness of the solution rx1 in Lx1, r, = rAi for
A< x’ € A+€, The interval [a,B] is compact, so if det D(z) # 0 for & € Re z ¢ B,
then we must have n=r = rB for every A €@ [a,B]. In particular,
xa,ﬂ - (rB - ru)'g‘.- (drB - d:a)"d1 = 0, and we have proved the last statement of Lemma
6.4.
That det D(z) can have at most finitely many zeros of finite order in a strip
A € Re z € A+ was established in the proof of Theorem 5.1 (the lines following (5.15)).
By the compactness of the interval [a,8], the same is true in the whole strip
. a < Re z € B.
To get (6.3) in the general case we go back to the proof of Theorem 5.1. Pix 1A,
@ ¢ A ¢ 8. Analogously to (5.15), we can find X1 and Xz, with a < A‘ <A< Az <8
such that

inf | (det u)d(z)l > Hdet w) 0, .
A SRe =€), 5%

Then the solution q of (5.17) satisfies q € HX A" If necessary, modify the values of
172
X1 and Az slightly to ensure that

(6.5) det D(2) # 0 (Rez= X, §=1,2) .

b |
1

Recall that f,, g1 e Lx 2 (since X1 > P,)e By (5.13) and (6.1), on the lines .
1772

Re z = Xj (3 =1,2),

(6.6) % (z) = 0-1(2)31(3) - :D-'(z)?‘(z) .
1

~28-

— . . .- ———m - . p— _—— - . . e e e e e e — = —————

» .

.-




AW T s e

The same argument as in Section 5 shows that the right hand side of (6.6) is a vector of
(extended) locally analytic functions on the maximal ideal space {z e cC IX1 < Re z € 12)
of t‘l‘,kz' with a finite number of poles at the zeros zy of det D(z) that lie in the
strip A1 < Re zj < Az (see [30, Definitions 3.2 and 7.1]). The pole at zj is of order
at most kj. Apply [30, Theorem 3.6] to the components of this vector to get a functiwen

(1 €1¢€ k,) such that

1

1,3 3

(6.7) % (z) = ) B, .(z-z )~
A liﬂa zjdz 1.3 3

ae I.1 (c®) and constants B8
X1 'x2

+ az)

for Re z = Aj (3 = 1,2). Take the inverse transform of (6.7) for j =1 and 3} = 2 to

get for almost all ¢,
a(t) (¢t <o) ,

(6.7) x, (t) = 1-1 z.t
A alt) + 1 slj(—';—_1—)—lej (t>0 ,
,
X1<Ra zjdz
and tl-i zjf.
a(t) - [} —_—— (tco) ,
1,3 (1-1)1
x r
1<Re ’jdz
(6.8) x, (t) =
2

a(t) (c2>20) .

Subtract (6.7) from (6.8) to get

z tl-‘ zjt
x, (t) - x, (£) = 8 —_— (teRrR .
xz x1 x1<m ’jdz 1,5 (1=-1)¢

The final conclusin now follows in the same way as in the case when det D(z) has no zeros
in the gstrip a ¢ Re z < B.
! o
We are finally ready to state and prove our main result, We give two formulations,

one for the continuous case, and one for the LP-case.
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Theorem 6.5. Let f(a,8] R, and assume that det D(z) ¥ 0 on the lines Re z = ¢ and

Re z = B, Then the continuous solutions x of (1.1), (1.2) can be written as a unique sum

X = xXg + Xo + Xy where xg is a golution of (1.1), Xe and %; are solutions of

(1.6}, xg and x; satisfy

(6.9) !xs(t)l = O(exp(at)) (t *+ =) ,

Olexp((8+€)t)) (t + =) ,
(6.10) Ixu(til =

Ol(exp(dt) (t * =)

(where 4 is the constant in Theorem 5.2, and € > 0), and Xo is an exponential

polynomial

z.t

b]

m
(6.11) x (t) = I p.tie .

=1 )

Here zy (1€ 3<m are the zeros of det D(z) in the strip & < Re z < B, and Py are

polynomials of degree at most one less than the order of the zero zj. In particular, if
det D(z) # 0 for a € Re z € 8, then xo = 0. If 8 2 4, then Xy=0, If a=p  and

(5.12) holds, then

(6.12) x € BUC(R)
and_if moreover ¢ € BC (R :N), £, g€ nco(n';n), then x_ € BC (n).

Theorem 6.6. Let ([a,B] CQ, and agsume that det D(z) # 0 on the lines Re z = a and

Re z = 8. Then the LP~golutjon (1 < p < =) of (1.2) = (1.5) can be written as a unique

Bum X = Xg + Xo * Xy ¥ % ¥Yg * yo * Yyr where xg, Yg is a solution of (1.3}, (1.4),

xcr Yo and Xyr Yy Aare solutions of (1.7), (1.8), and the components satisfy the

following conditions, Let d be the constant of Theorem 5.2, let ¢ be given as in

Theorem 5.1, with A = 8, and define

n(t) (¢ <o) ,
(6.13) '\s(t) - {

exp(-at} (t > 0} ,
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exp(-(B+€)t) (t € 0) ,
(6.14) nu(tl -
exp(-dt) (t > 0) .
Then Xgr Yg € Lp(nsl, and Xy Yy € :.p(nu). The central components Xo and Yo are

exponential polynomials

m Z,t
(6.15) X = ) py(tle i,
3=1
» z.t
(6.16) yot) = L qitled ,
c s

where z4 (1 € 3¢ m) are the zeros of det D(z) in the strip a < Re z < B, and Pye

qj are the polynomials of degqree at most one less than the order of the zero 'j' In
particular, if det D(z) ¥ 0 for a < Re z < B, then x =y, =0. If 824, then
Xy * Yy = 0« If A =P, and (5.12) holds, then xg, y. € L°(n).

Clearly, one gets Theorem 6.5 from Theorem 6.6 by substituting throughout BUC or
BC, for tP. The proofs of the two theorems are completely similar, so we give a combined
proof.
Proof. Define
(6.17) xS-¢+xq,xc-xa-xa,:%-xd-xs ’
(6.18) Yg = Yoo Yo ™ ¥p " Yoo Yy = ¥y~ ¥g o
where the functions on the right hand side are defined as in Lemma 6.1, with the resolvents
constructed in Theorem 5.1 and 5.2. Then x = xg + xo + x5 = xq + ¢, and
Y =Yg+t Yo+ Yy™ Ya 90 by Lemmas 6.1 and 6.2, and by the construction in Section 4, x,
y is the solution of (1.2) - (1.5) (or (1.2 ~ (1.4) in the continuous case). That the
components satisfy the right equations and have the right growth rates follows from (6.17),
(6.18), Lemma 2.1, Theorem 5.1 and Lemmas 6.1 and 6.3. Lemma 6.4 tells us that Xar Yo

are of the given form. Finally, if B8 > 4, then by (6.1), (6.2), (6.17), (6.18) and

Theorem 5.2, Xy =¥y " 0.




That the decomposition in Theorem 6.5 and 6.6 is unique follows from the fact that the

different components have different exponential growth rate. Let x = ;s + )—:c + ;U'

Yy = yg + Yo + Yy be another decomposition, and define Xg = Xg T Xgo Yo = ¥g = ¥go etc. ;
Then x = Xg + x, + Xy ¥ = ¥g + Ye + Yy is a solution of (1.2) = (1.5), with i 1
¢ =f=g=y =0, soby the uniqueness of the solution of (1.2} - (1.5}, x =y = 0. i
Thus, X - -(xs + xc), Yy = -(ys + yc), and by using the growth estimates that we have on
the different components, one can show that g’, ;U e t.‘U'lx })s where n, is the function
‘ 1 ~ ~
defined in (5.9), with X, =8 +€/2, and € {s the constant in (6.14). As Xge Yy is a

solution of (1.7), (1.8), we must have
D(z)(X,) (z) =0 (Re z =1y .

But det D(z) ¥ 0 on the line Re z = X, {because T in Theorem 5.1 belongs to
1

1 ~ " ~
L (n)“)), so necessarily (xul (z) =0 (Rez= X,), i.e. Xy = 0. By (1.7}, also

~ ~

;U = 0. This means that ;c " Xer Yo < ;s. and by comparing the growth rates of the left

and right hand sides we find that ;c - ;c = 0, Clearly then, also X = ;8 = 0, and the

decomposition is unique.

Remark 6.7. If the initial data belong to W'/P(n), 1 € p € ®, then by Lemmas 3.5 and

3.6, and the way in which we constructed and decomposed the solutions, x and its

o components belong to W''P, and y and its components belong to Ww2'P, with the

appropriate influence functions. Here Hz'p {(n) consists of functions y such that vy,

y*' and y" all belong to Lp('\). When p = ®, this tells us that Lipschitz continuity

is preserved.

7. A _Semigroup Interpretation
! Our decomposition theorems can be interpreted in a semigroup setting. For simplicity

we discuss only the homogeneous equation

(7.1) L urx(e)) = vexe) (cerh)

with initial condition

(7.2) x(t) = ¢(t) (t @R}
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in the continuous case, and the corresponding homogeneous equations

(7.3) ex(t) = y(¢) (t€R'T ,

(7.4) y'(t) = vex(t) (teRrR) ,

with initial condition (7.2) and

(7.5) y(0) = ¥o

in the LP-case. The semigroup generated by (7.1}, (7.2) is somewhat different from the
semigroup generated by (7.2) - (7.5), so we discuss the two case separately.

First consider the continuous case. Let x be the solution of (7.1), (7.2), let At
be the combined translation and restriction operator defined in (2.20), and define
operator T(t) for t @ rt b;

(7.6) T(t)¢ = Atx .

Then T(t) maps auc(n';n;c") into itself, and it has the semigroup property

T(stt) = T(s)T(t) (s, t @ R*). By the definition of BUC(N), the translation operator
Tt is strongly contjinuous in BUC(N), and this implies that T(t) is strongly
continuous in BUC(R jN). Thus, T(t) becomes a strongly continuous semigroupe.

We claim that the domain D(A) of the generator A of T(t]) is the sget

(7.7 p(a) = {¢ e Buc' (R1n)|uve*(0) = ves(0))
and that
(7.8) Ad = ¢'- (¢ CD(A)) .

Here ¢'(t) is the ordingry derivative of ¢(t) for t < 0, and ¢'(0) is the left~-
derivative of ¢ at zero,
By the definition of the generator of a semigroup [25, p. 302],

(7.9) Ad = lim h"(Ahx -0 =~ 1im h (A x - 4 x)

h*0+ h*0+ h 0

with D(A) consisting of those ¢ @ BUC(R jn) for which this limit exists in BUC(R-:n).

+) for t €0,

In particular, (7.9) iwmplies that x has a continuous right-derivative x(
hence x(t) = ¢(t) has a continuous derivative ¢'(t} = x(+’(t) for t € 0 (where

4'(0) stands for a left-derivative), and that A¢ = ¢' @ BUC(R ;Nn).
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Conversely, suppose that ¢ € BUC(R ;n) has a derivative ¢' @ BUC(R :n), and that
x has a right-derivative x{*/(0) at zero, with x{*)(0) = ¢'(0) (where ¢'(0) again is

*) & Bucr™:m,

the left-derivative of ¢ at zero). Then x has a right-derivative x
and by the half-line version of Lemma 3.4, the limit in (7.9) exists and equals ¢'. 1In
particular, ¢ @ D(A). This shows that (7.8) holds, and that D(A) consists of exactly
those ¢ @ BUC(R jn) satisfying ¢’ @ BUC(R sN) for which $'(0) = x{*)(0). To get (7.7)
one must identify the condition ¢'(0) = x{*)(0) with the condition K*$'(0) = Ve$(0). We
leave this step to the reader, as it is essentially the same argument as in the case of
finite delay (cf. {18, Thm. 10.1, p. 307)).
With the aid of Theorem 6.5 one can decompose BUC(R ;N;C") into three invariant

subspaces, BUC(R-;VI;C") =S ®CO®U, where S is a "stable" subspace, C is a "central”

subspace, and U is an "unstable" subspace.

Theorem 7.1. let (x,8] C 2, and assume that det D(z) ¥ 0 on the lines Re z = a and

Re z = B, Then BUC(R sn;C") can be decomposed in a unique way into subspaces §, C and

U, with the following properties. The subgspaces C and U are contained in

nco(n',mc“). Let 'l.‘s(t), 'rc(t) and 'ru(t) be the restrictions of T(t) o 8§, C

and U. Then 'rc(:) and Tu(t) can be extended to groups on C and U, and 'l‘s(t)

and T, (t) satisfy
(7.10) I'rs(t)l = O(exp(at)) (t * =) ,

O(exp( (B+€)t)) (t *+ -»)
(7.11) I'ru(t)l =

O({exp(dt) (t * =) ,

where d is the constant in Theorem 5.2, and € > 0. The subspace C is finite

| dimensional, and it is spanned by functions ¢ of the form ‘

m zjt i

(71.12) #(t) = I p.(t)e (t<o) , ]

o =1 3 :
' where zj (1 € J <m are the zeros of det D(z) in the strip a < Re z < 8, and Py .

are polynomials of degree at most one less than the order of the zero ’j' In particular,

if det D(z) #O0 for a S Rez B, then c= {0}, 1£ 8> 4, then u= {0}. Finally, .
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if a=p,, ¢ @BC (RymC"), and n has the relaxation property, then
(7.13) T(t)¢ = olexp(p t)) (t * =) .

For a version of Theorem 7.1 with finite delay (and with the singular part of M
identically zero), see {22, Theorem 4.1 and 4.2]. The dimension of C is actually equal
to the sum of the orders of the zeros of det D(z) in G < Re z < B; see [36].

Proof. We shall use Theorem 6.5 to define projections Pg, Po and Py of BUC(R N}
onto S, C and U. For every ¢ € BUC(R-)n), let x be the solution of (7.1), (7.2),

split it into xg + X, + X,; as in Theorem 6.5, and define Psv =4 x_, PCO = A and

o*s o*c’

PUV = onu. The functions f1 and 94 defined in (4.15) - (4.16) are continuous, linear

functions of ¢, and the functions AOXS' onb and onU depend linearly and
continuously on f1 and - Pp This means that PS' Pc and PU are continuous, linear
operators. They are projection operators, because Xgsr Xo and xy all satisfy (7.1), and
the decomposition in Theorem 6.5 is unique. For the same reason they commute with T(t)
for t > 0. By (7.2), Pg + P, + Py is the identity operator. Thus, defining 8, C

and U to be the ranges of Pg, P and P,, we find that S, C and U are closed,

invariant subspaces of BUC(R sN) with BUC(R M) = S @ C ® U. as Xc and xy satisfy

(1.6), we can define To(t) and Ty(t) also for negative t, and To(t) and Ty(t)

become groups. That Tg and T, satisfy the growth properties (7.10), (7.1%) and (7.13)
(if necessary, redefine N so that n(t} = exp(-p,t) (t > 0) to get (7.13)) follows from
(6.17), Lemmas 2.2, 2.4 and 6.1, and Theorem 5.1. That C is spanned by functions ¢ of
the form (7.12) follows from (6.11), and clearly C is finite dimensional. If 8 2 a4,
then by Theorem 6.5, U = {0}. FPinally, the uniqueness of the decomposition in Theorem 7.1

is a consequence of the uniqueness of the decomposition in Theorem 6.5.

0O
Now consider the LP-case. Let x, y be a solution of (7.2) = (7.5), and define the
operator Q(t) on c" x P(R7;n;0) by
(7.14) QUEN(y,y,#) = (yit),Ax) .
Then Q(t) maps " x Lp(R-;HIC) into itself, it has the semigroup property Q(s+t) =
Q(s)Q(t}) (s, t @ R*), and it is strongly continuous if p < ®, In the sequel we
-35-
AT ST a4 o G -
.. S v : Y i ﬁ:n YA ¥
- % e o - Tt 'i-




therefore restrict the values of p to 1 S p < ®, One argues as in [3] to show that the

domain D(B) of the generator B of Q is given by

(7.15) vt € c” x w"p(a'm;c) | uee(0) = y}
and that
(7.16) B(Y!’) = (V*¢, ¢') .

Using Theorem 6.6 one can again decompose cn x LP(R-yn'c! into three invariant
subspaces, just as in Theorem 7.1. The result that one gets is very similar to Theorem
7.1, and its proof is almost identical to the proof of Theorem 7.1. Therefore, we leave

the formulation and the proof of Theorem 7.2 to the reader.

8. Some Additional Comments

In Section 4 we started with a dominating function ¢ on r* satisfying (4.3),
extended it to R, and let N be an influence function dominated by pP. For instance, if
p(t) = (1 + t)Y (t > 0) for some positive constant Y, then we take P(t) = 1 (t < 0),
and we can choose

~ {(1*|1:|l"Y (t <o} ,
{8.1) n(t) = p(t) =
1 (t?20) .
This influence function tends to zero as t * - (but not exponentially), and it has the
relaxation property.

On the other hand, one could also follow the spirit of [41] and [44] and start with a
dominating function £ on R~, assume that it satisfies a condition similar to (4.3),
extend it to all of R, and choose N = p. Of course, then (4.4) is no longer true, but
that causes only minor modifications in the main theorems (it affects the growth rates of
the stable components in the case when @ = p_J). A more serious problem with this approach
is that one cannot obtain growth rates for N anywhere close to those in (8.1), because by
(3.1), if a submultiplicative function tends to zero at infinity, then it does so with

exponential rate.
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We have assumed throughout that UW is atomic at zero. This assumption is used

essentially only to assure forward existence and uniqueness for the solutions of (1.1),
(1.2) or (1.2) - (1.5). Even without it the technique used here yields forward existence
in the stable and central subspaces, and backward existence in the central and unstable
subspaces. There is an example in [3] of an equation for which one has forward existence
and uniqueness without U being atomic at zero, and our main theorems could be modified to
apply to that equation.

One can sharpen Theorem 5.1 and subsequent results slightly by appearling to [30,
Section 8] rather than to {13, Satz 7). This permits one to replace '(det u,s'k in (S5.7)

and f: p(t)al(det H)sl(t) in (5.12) by the spectral radii

*
lim ¥(det u) “ll/“
n+* 8
and
* 1
1im [f: preId](det w) "l(t)] /mo

n#‘
L 4
respectively, where (det u)sn stands for the n-fold convolution of (det u)s with

itself. For more details, see {30, Section 8].
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